
    
      Navigation

      
        	
          index

        	
          next |

        	django-webtemplates 0.1.0 documentation 
 
      

    


    
      
          
            
  
django-webtemplates

webtemplates is a Django template loader than can load templates from an
external web site. You can use it to reduce duplication when developing hybrid
applications that run on multiple frameworks, or off multiple servers.

Contents:



	Setup

	Usage

	Example

	Settings
	Configuration

	Caching

	Request timeouts













          

      

      

    

    
         Copyright 2012, Tim Heap.
      Created using Sphinx 1.1.3.
    

  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	django-webtemplates 0.1.0 documentation 
 
      

    


    
      
          
            
  
Setup


	Get the source from the Git repository [http://bitbucket.org/ionata/django-webtemplates/] or install it from the Python
Package Index by running pip install django-webtemplates.



	Add webtemplates to the INSTALLED_APPS setting:

INSTALLED_APPS += (
    'webtemplates',
)







	Add webtemplates to the TEMPLATE_LOADERS setting:

TEMPLATE_LOADERS += (
    'webtemplates.loaders.Loader',
)





Order is important. If you define webtemplates.loaders.Loader before
other loaders, webtemplates will be used before any templates on your
local system. If the webtemplates is defined after other loaders,
the webtemplates loader will only be used if the template is not found
locally.



	Define all of the remote templates you want to use in the WEBTEMPLATES
setting. This should be a list of two-tuples, which define the remote
template location, and its local name:

WEBTEMPLATES_BASE = 'http://example.com/templates/'
WEBTEMPLATES = [
    (WEBTEMPLATES_BASE + 'site_base.html', 'site_base.html'),
    (WEBTEMPLATES_BASE + 'user_page.html', 'logged_in_base.html'),
]





WEBTEMPLATES_BASE is used here to stop ourselves duplicating the full
path of the remote template every time, but WEBTEMPLATES_BASE is NOT
used anywhere by webtemplates.

Note how logged_in_base.html comes from an address with a different
basename. The template names do not need to match up.



	site_base.html and logged_in_base.html will now be loaded from
http://example.com/templates/site_base.html and
http://example.com/templates/user_page.html. You can use them just like
any other template in your system.








Usage

Once set up, you can use any of the templates defined as a web template just
like a normal templates. This works both ways - local templates can extend
remote templates, remote templates can include local templates, and remote
templates can use template tags and filters. Local and remote templates work
exactly the same.




Example

An example Django application is provided in the example/ directory [http://bitbucket.org/ionata/django-webtemplates/src/master/example/] in the
repository. It defined two pages that override two remote templates.





          

      

      

    

    
         Copyright 2012, Tim Heap.
      Created using Sphinx 1.1.3.
    

  
    
      Navigation

      
        	
          index

        	
          previous |

        	django-webtemplates 0.1.0 documentation 
 
      

    


    
      
          
            
  
Settings


Configuration

The remote templates that you want to use must all be defined in the Django
settings.py. django-webtemplates does not have any functionality to
automatically discover remote templates.

To define remote templates, you must provide a list of two-tuples which define
where to find each remote template you want to load:

WEBTEMPLATES_BASE = 'http://example.com/templates/'
WEBTEMPLATES = [
    (WEBTEMPLATES_BASE + 'foo.html', 'foo.html'),
    (WEBTEMPLATES_BASE + 'bar.html', 'bar.html'),
]





This will instruct webtemplates to load two templates: foo.html and
bar.html. They will be loaded from
http://example.com/templates/foo.html and
http://example.com/templates/bar.html respectively. webtemplates will
only try to load those two templates from those two locations, and nothing more.


Note

WEBTEMPLATES_BASE is used here to stop ourselves duplicating the
full path of the remote template every time, but
WEBTEMPLATES_BASE is NOT used anywhere by webtemplates.




Application templates

Templates can be loaded from subdirectories, just like they are from the
file system. This is usually done for separating app templates from one another:

WEBTEMPLATES_BASE = 'http://example.com/templates/'
WEBTEMPLATES = [
    (WEBTEMPLATES_BASE + 'polls/base.html', 'polls/base.html'),
    (WEBTEMPLATES_BASE + 'blog/base.html', 'blog/base.html'),
]





This will attempt to load polls/base.html from
http://example.com/templates/polls/base.html.




Different remote and local names

Some times, the remote application does not allow you to name things in the same
manner you would expect of Django templates. Many frameworks remote the
.html extension, for example, preferring to pretend everything is a
directory and ending in /. Django itself does this. The remote name of a
webtemplate does not need to match up with the local name:

WEBTEMPLATES_BASE = 'http://example.com/'
WEBTEMPLATES = [
    (WEBTEMPLATES_BASE + 'templates_for_django/polls/', 'polls/base.html'),
    (WEBTEMPLATES_BASE + 'blog_template_for_django/', 'blog/base.html'),
]





This will attempt to load polls/base.html from
http://example.com/templates_for_django/polls/, and blog/base.html from
http://example.com/blog_template_for_django/.






Caching

Remote templates are cached by default, instead of requesting the template each
time it is required. It uses the Django caching framework [https://docs.djangoproject.com/en/dev/topics/cache/] to cache the result
of each template request.

webtemplates uses the webtemplates cache settings, if they are defined,
falling back to the default cache if it is not. If you want to modify any of
the cache settings for webtemplates, add a webtemplates key to the
Django CACHES setting:

CACHES = {
    'default': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'DefaultCache:',
    },
    'webtemplates': {
        'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
        'LOCATION': 'WebTemplates:',
        'TIMEOUT': 10, # Cache for 10 seconds.
    },
}





Note that a default cache is required by Django, even if you do not use it.
The local memory cache should be good enough for most applications, unless you
define a large number of remote templates.

During development, you will probably want to use the dummy cache backend,
django.core.cache.backends.dummy.DummyCache, which does not actually cache
anything.


Permanent caching

Your templates can be cached indefinitely, in case the remote templates become
unavailable. A fresh copy of the templates will be requested as the main cache
expires, but if a fresh copy can not be obtained, the stale copy from the
permanent cache will be used in its place. You can enable this by setting
WEBTEMPLATES_PERMANENT_CACHE to True in your settings.py:

WEBTEMPLATES_PERMANENT_CACHE = True





This is turned off by default. If you need a fall back in case the remote server
is unavailable, you can also use the normal Django template loader hierarchy.
If a template can not be loaded via webtemplates, the next template loader
defined in TEMPLATE_LOADERS will be used instead.


Note

If the remote server is not available when the template is initially
loaded, and you are using a non-permanent cache like MemCache or
LocMemCache, then there will be no permanently cached template to return.
The template loading will fall through to the next template loader in the
hierarchy. It is very important that you always create a local fall back
template for each of your remote templates.








Request timeouts

By default, a request for a remote template will time out after a generous 3
seconds. You can change this by setting the WEBTEMPLATES_TIMEOUT setting.
This should be the number of seconds a request should last for, before timing
out. This can be a float:

WEBTEMPLATES_TIMEOUT = 1.5 # Time out after 1.5 seconds





If your remote templates are taking longer than the default 3 seconds, the
responsiveness of your site is going to take a serious hit. You should perhaps
consider a different to loading your templates, as your users will
(occasionally) have to wait more than three seconds, plus the time it takes to
process their request normally, before they get a resonse - not a nice
situation!







          

      

      

    

    
         Copyright 2012, Tim Heap.
      Created using Sphinx 1.1.3.
    

  
    
      Navigation

      
        	
          index

        	django-webtemplates 0.1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    

    
         Copyright 2012, Tim Heap.
      Created using Sphinx 1.1.3.
    

  _static/plus.png





_static/down.png





_static/comment.png





_static/minus.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





search.html

    
      Navigation


      
        		
          index


        		django-webtemplates 0.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    

    
        © Copyright 2012, Tim Heap.
      Created using Sphinx 1.1.3.
    

  

_static/comment-close.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





